汽轮机的损失一般可分为:汽轮机内部损失和外部损失。内部损失是直接影响蒸汽热力状态的各种损失,外部损失是不影响蒸汽状态的损失(主要是机械">

首页 > 专家说

汽轮机高中低压缸的作用是什么

来源:江南全站appapp最新版
时间:2024-08-17 10:38:16
热度:

汽轮机高中低压缸的作用是什么【专家解说】:">汽轮机的损失一般可分为:汽轮机内部损失和外部损失。内部损失是直接影响蒸汽热力状态的各种损失,外部损失是不影响蒸汽状态的损失(主要是机械

【专家解说】:">汽轮机的损失一般可分为:汽轮机内部损失和外部损失。内部损失是直接影响蒸汽热力状态的各种损失,外部损失是不影响蒸汽状态的损失(主要是机械损失和轴端损失)。近几年投产使用的300MW、600MW汽轮机在通流的设计方面,已经引进采用了世界领先技术,如喷嘴的设计加工,动静叶片的三维、四维设计等,所以汽轮机内、外部损失,即导致机组缸效低的主要问题就集中在汽封的结构型式上。目前,为了提高机组运行效率,发电厂通过采用各种先进成熟技术对汽封进行技术改造,来提高机组的安全可靠性、以及机组的可用率、机组热力性能和出力,已成为节能提效的一项重要措施。现主力机组300MW、600MW汽轮机组,都存在汽封漏汽量大等现象,尤其高中压合缸机组,由于高中压间汽封的磨损,高中缸窜汽并部分漏入夹层,夹层汽流影响汽缸上下温度,高压缸效率低,通流径向汽封磨损严重等问题,是影响机组运行经济性的主要原因。
随着汽封漏汽现象越来越引起汽轮机行业的重视,各大发电公司与汽轮机设计制造厂家纷纷论证使用新型汽封。作为解决上述问题的重要技术措施之一, “王常春”节能汽封在全国电厂及制造厂家的推广和使用,所带来的巨大经济效益,已经引起业内的广泛关注。
2 “王常春”节能汽封使用情况
哈尔滨通能电气股份有限公司成立二十余年来始终至力于密封问题的研发,针对汽轮机普遍存在的汽封漏汽(气)问题,研制出“接触汽封”专利(发明专利号:ZL 02 1 28382.6),并开发出“王常春”系列节能汽封产品。自2001年至今已先后安装在三百余台容量为3~600MW汽轮机上(几乎涵盖了国内各种机型),其中300MW、600MW汽轮机五十余台,经过多年来的运行实践以及热力性能和真空严密性试验所得数据,证明“接触汽封”是一项节能降耗、安全可靠、先进成熟的新技术,2005年已被列为国家重点新产品,并在2008年成为国家发展和改革委员会首批重点节能技术推广产品。由于使用节能效果明显,目前国内一些较大的汽轮机制造厂(如哈汽、北重、东汽、上汽等)均在新机组制造及现有机组改造时采用该专利技术产品。
应用实例一:1、2005年6月在云南宣威电厂对东汽产300MW N300-16.7/537/537-6型#8机进行轴封改造,安装高压轴封10圈、中压轴封8圈、高中压间汽封9圈、低压前后共10圈,该机组大修后一次启动并网成功。为检验使用效果,在2006年2月由山西电力科学院进行了#8机的热力性能试验。
实验结果如下:
轴封漏汽对热耗率的影响
大修前后轴封漏汽量
名    称 单位 设计值 大修前 大修后
高压后轴封漏汽流量 kg/h 4417 10540.1 6577.1
中压后轴封漏汽流量 kg/h 812 1648 1156.6
高压缸夹层漏汽流量 kg/h 1601 12560 5100
高中压缸过桥漏量 kg/h 6825 35498.1 15666
大修前后轴封系统对经济性的影响
名    称 影响热耗(kJ/kW.h) 大修效益
kJ/kW.h 大修效益
g/kW.h
大修前 大修后  
高压后轴封漏汽量 27.163 8.935 18.228 0.691
中压后轴封漏汽量    
高压缸夹层漏汽量 8.969 2.862 6.107 0.232
高中压缸过桥漏量 50.133 14.593 35.540 1.348
合计 86.265 26.390 59.875 2.271

大修后明显改善了轴封漏汽、过桥及夹层漏汽等不良漏汽,对经济影响为59.875kJ/kw.h,约节煤2.27g/kw.h。
应用实例二:2005年9月在河北邯郸热电厂对哈汽产200MW CC140/N200-12.75/535/535型#11机进行轴封改造,安装高压前端汽封11圈、高压后端汽封7圈、中压前端汽封8圈、中压后端汽封6圈、低压前后共10圈,该机组大修后一次启动并网成功。2005年11月和2006年5月,西安热工研究院有限公司依据美国机械工程师协会《汽轮机性能试验规程》(ASME PTC6-1996)对#11汽轮机进行了严格的热力性能试验,试验效果如下:
一、轴封一漏、二漏的汽封漏汽量达到设计值。该机组的轴封漏汽量设计值为:一漏6.87t/h,二漏2.86t/h。现场测量值一漏为5.1t/h,二漏为3.0t/h。而改造前一漏和二漏的漏汽量分别为8.6t/h和4.8t/h。汽封漏汽量大幅度减少,机组运行的经济性显著提高。
二、通过对高压内档汽封安装接触式汽封,使机组一段抽汽温度明显减低。改造后机组一段抽汽温度为363℃,改造前一段抽汽温度为388℃,该温度设计值为370℃。该温度的降低表明主蒸汽通过高压内档汽封漏入内外缸夹层的蒸汽量大幅度的低于设计值,机组运行的经济性得到提高。
三、通过对低压缸两侧轴端汽封改造为接触式汽封,使机组运行的真空严密性得到改善。改造前该机组的真空泄漏率为700-800Pa/min,改造后为105Pa/min,优于300Pa/min的合格值,达到优良水平。真空的提高使得机组运行的经济性得到大幅度提高。
四、通过改造,机组轴端外档漏汽量极少,油中带水问题得到解决,保证了机组的安全运行。
五、改造后,机组的轴向位移,高、中压缸胀差,高、中、低压缸膨胀均在合格范围内,机组运行稳定。
试验结果表明该机组的热力性能达到国际领先水平。
应用实例三:2009年2月在贵州黔西电厂#1机对哈汽73B型汽轮机N300-16.7/537/537-2型进行改造,汽封改造范围:高压后轴封---4道为接触式铁素体汽封,中压后轴封---4道为接触式铁素体汽封,平衡环汽封---10道为浮动齿式铁素体汽封,低压前后轴封—6道为接触式铁素体汽封。
名称 设计 改前 改后 改前、该后偏差 设计值与改后偏差
主蒸汽流量(t/h) 902.5 932.1 900 ↓-32.1 ↓-2.5
机侧主汽压力(MPa) 16.67 16.74 16.88 ↑0.14 ↑0.21
机侧主汽温度(℃) 537 541 539 ↓-2 ↑2
调节级压力(MPa) 11.831 11.9 11.47 ↓-0.43 ↑0.36
高排压力(MPa) 3.534 3.29 3.2 ↓-0.09 ↓-0.334
高排温度(℃) 311.1 319.8 310.1 ↓-9.7 ↓-1
机侧再热汽压力(MPa) 3.171 3.05 2.96 ↓-0.09 ↓-0.21
机侧再热温度(℃) 537 540 540 0 3
机侧给水温度(℃) 274.1 270.18 268.6 ↓-1.5 ↓-5.5
一段抽汽压力(MPa) 5.792 5.55 5.44 ↓-0.11 ↓-0.35
一段抽温度(℃) 381.4 398.7 388.3 ↓-9.6 ↑6.9
二段抽汽压力(MPa) 3.534 3.17 3.15 ↓-0.02 ↓-0.384
二段抽温度(℃) 316.8 327.3 317.7 ↓-9.6 ↑0.9
三段抽汽压力(MPa) 1.575 1.51 1.51 0 ↓-0.065
三段抽温度(℃) 435 465 462 ↓-3 ↑27
四段抽汽压力(MPa) 0.7442 0.75 0.74 ↓-0.01 0
四段抽温度(℃) 338.9 366 362 ↓-4 ↑23.3
五段抽汽压力(MPa) 0.2509 0.26 0.26 0 ↑0.01
五段抽温度(℃) 235.5 290.8 275 ↓-15.8 ↑39.5
六段抽汽压力(MPa) 0.03 0.05 0.05 0 ↑0.02
六段抽温度(℃) 136.9 222 196 ↓-26 ↑59.1
七段抽汽压力(MPa) -0.027 -0.0063 -0.0045 ↑0.0018 ↓-0.0225
七段抽温度(℃) 86.6 89.5 86.3 ↓-3.2 0
八段抽汽压力(MPa) -0.066 -0.0615 -0.05 ↑0.015 ↑0.016
八段抽温度(℃) 62.7 64.5 62.7 ↓-1.8 0
低压缸[排汽温度 37.5 38.3 38.3 0 0
推力瓦温度(℃)  48℃ 48℃ 0
备注:以上数据为瞬时数据。记录时以机组大修前、后机侧主汽压力、主汽温度\再热后温度\排汽温度均相同时记录。大修前参数记录时间为:08年4月30日;大修后参数记录为09年4月13日10:30分-10:50分数据。调速汽门控制方式为:顺阀。
通过运行数据可看出汽耗在THA工况下汽耗率由改造前3.107kg/kw.h减小至同工况下的3.00kg/kw.h,高压排汽温度由改造前311.1℃下降至310.1℃接近了设计值,各瓦运行数据良好,推力无改变,并满足自密封的运行要求。
3 使用“王常春”节能汽封安全及经济性情况
在电厂决定采用该项技术的可行性分析时,所关注的首先是安全性问题,启、停过程中是否会产生轴系振动,是用户最为关注的问题,其次是产生的经济效益。
“王常春”节能汽封,在改造中根据原机组设计理念和实际运行情况,合理设计使用汽封结构及安装方案。如压力区段:ⅰ.外侧轴封,主要采用接触式轴封:非金属接触齿可将径向间隙调整至原汽封齿无法达到的0-0.05mm间隙, 平均动静间隙减小0.30-0.40mm。ⅱ.在平衡环汽封(或过桥汽封)、高中隔板汽封由于汽流量及压差相对较大,采用间隙浮动齿式汽封:浮动齿即可保证让一小部分汽流通过,不改变原机组的性能设计,又可在保证安全的前提下有效的减小动静间隙,调整至原汽封齿无法达到的0.25-0.30mm间隙。
对此即能大大减小缸内各漏点的漏汽量,又能确保进入汽轮机的全部蒸汽量都沿着汽轮机的叶栅通道前进做功,又有效的防止了汽缸内蒸汽漏出缸外,引起轴承温度升高或使润滑油中含水,从而减少能源的损失,使机组的效率有显著提高。通过采用专利技术—间隙浮动齿汽封与非金属密封齿汽封的配合使用,达到解决汽封漏汽问题,从而达到节能增效的目的;
在真空区段,轴封采用接触式轴封,非金属接触齿采用金属齿无法达到的0-0.05mm的径向间隙,对此有效的防止了汽轮机外侧的空气向汽轮机内泄漏,保证汽轮机真空系统有良好的真空,从而保证汽轮机有尽可能低的背压参数,即保证了汽轮机的效率。
正是“王常春”节能汽封工作原理具有上述的工作特性,从而增加了用户使用该项技术的决心,即可保证安全运行,又能获得很大的经济效益。以300 MW为例,通过全部轴封及高中平衡环汽封(或过桥汽封)的改造平均降热耗约60kJ/kw.h。
4使用“王常春”节能汽封所关注的问题
4.1是否能保证自密封运行
根据汽封工作原理,所谓自密封即是轴封用汽主要靠高、中压轴封的漏汽供给。现在的300MW、600MW汽轮机汽封漏汽远远大于设计值,“王常春”节能汽封改造是将原汽封1/3---1/5的汽封齿改造为小间隙的汽封齿,来保证机组各段的漏汽量接近设计值,提高机组的运行质量。所以通过黔西电厂#1机的轴封及平衡环汽封改造、宣威电厂#8机的实际应用也可以证明,此汽封技术不改变自密封性能。
4.2是否改变各段抽汽的数值及轴向推力是否有变化
以通能公司为黔西电厂#1机哈汽产300MW汽轮机进行“王常春”节能汽封改造为例:该机型由34级组成,高压缸有1个单列调节级和12个压力级,中压缸有9个压力级,低压缸有2×6个压力级;回热加热器抽汽为7段,分别从第9、13、18、22、24、31、26/32级后抽出,供三台高压加热器、一台除氧器和三台低压加热器用汽,在凝结水泵和7号低压加热器之间设有轴封加热器。而此次改造只为轴封及平衡环汽封,没有涉及到隔板及叶顶汽封,即各段抽汽变化不受影响,#1机实验数据可以说明此问题。
大修前后抽汽压力变化表
名称 设计 改前 改后 改前、该后偏差
一段抽汽压力(MPa) 5.792 5.55 5.44 ↓-0.11
二段抽汽压力(MPa) 3.534 3.17 3.15 ↓-0.02
三段抽汽压力(MPa) 1.575 1.51 1.51 0
四段抽汽压力(MPa) 0.7442 0.75 0.74 ↓-0.01
五段抽汽压力(MPa) 0.2509 0.26 0.26 0
影响推力的因素主要有:1.负荷升高,则主蒸汽流量增大,各级蒸汽压力差增大,使机组轴向推力增大。 2.主蒸汽参数降低,各级反动度增大,使轴向推力增大。 3.隔板汽封磨损,漏汽量增大,使各级压力差增大。 4.机组通流部分因蒸汽品质不佳而结垢,相应级叶片和叶轮的前后压力差增大,使轴向推力增大等。通过大修前后高压排气温度及推力瓦温变化表可以看出改造前后推力瓦温度一直为48℃,可以说明轴向推力没有发生变化,同时改造后高压排汽温度明显改善,接近设计值。
名称 设计 改前 改后
高排温度(℃) 311.1 319.8 310.1
推力瓦温度(℃)  48℃ 48℃
大修前后高压排气温度及推力瓦温变化表



5 国内主力机组300MW、600MW汽轮机采用“王常春”节能汽封的可行性
5.1机组存在的问题
现国内主力机组300MW、600MW汽轮机,普遍存在汽封漏汽,机组缸效低等问题。运行实绩表明,高压缸效率普遍在76~80%,且大修后缸效率经几次启、停机后下降较快。高压缸排汽温度比设计值高。导致锅炉再热器减温水量增加,轴封溢流量大,与同容量及类型进口机组相比,机组运行煤耗率普遍较高。机组大修解体检查发现,高、中压内缸存在不同程度的变化,汽封径向间隙磨损严重,有的达1.5~2.5mm,弹性退让汽封普遍卡死,基本无退让作用,有些机组还发现汽封块背弧板式弹簧断裂等问题。
由于平衡盘直径大,前后压差大,汽封间隙稍增大一点,漏汽量增加较大,所带来的安全隐患及经济性问题亦愈大。
5.2采用“王常春”节能汽封的可行性
哈尔滨通能电气股份有限公司通过对国内主力机组300MW、600MW汽封结构、工作原理,设计、加工、安装技术条件的了解和机组运行情况及大修检查结果的调查。针对汽轮机结构特点及所存在的问题,应用“接触汽封”专利技术成果,开发出“王常春”系列节能汽封产品,采用专利结构:接触浮动密封齿与蜂窝汽封、铁素体汽封等新型材料、结构相结合,背部弹簧采用螺旋弹簧等新型结构,并根据不同部位采用不同汽封间隙,达到大幅度减少汽封漏汽量、提高机组真空度,实现机组运行经济性的显著提高。
  1. 如何预测用户端庭院低压燃气泄漏发生?
    2024-08-17
  2. 无负压供水设备中高低压腔双向补偿功能是怎么回事?流量控制器是个阀门吗?
    2024-08-17
  3. 叠压供水设备: 高低压腔,双向补偿功能 如何实现?
    2024-08-17
  4. 4,电动汽车充换电设施受理客户报装申请,低压居民应提供哪些资料
    2024-08-17
  5. 叠压供水设备: 高低压腔,双向补偿功能 如何实现?
    2024-08-17
  6. 无负压供水设备中高低压腔双向补偿功能是怎么回事?流量控制器是个阀门吗?
    2024-08-17
  7. 请问有没有人知道成都哪里有低压液化石油气卖
    2024-08-17
  8. 高压脊?低压槽 是什么
    2024-08-17
  9. 什么是燃气轮机和蒸汽轮机?
    2024-08-17
  10. 低压电动机的绝缘电阻,降低到多少梅格欧姆以下时,就必须烘干??谁知道快告诉下啊啊啊??
    2024-08-17
  11. 广东聚氨酯小型低压发泡机哪个牌号?什么价格?
    2024-08-17
  12. 请问;核动力航母为何还要装备蒸汽轮机?多谢了!
    2024-08-17
  13. 汽车的发动机常用低压电动机启动,下列有关电动机的说法中正确的是( )①电动机是根据电磁感应现象的原理制成的;②电动机是根据通电线
    2024-08-17
  14. 18某热力发电厂主要生产工艺单元有:储煤场、煤粉制备系统和输煤系统,燃烧系统,冷凝水系统,循环水系统,除渣及除尘、脱硫系统,汽水系统,配
    2024-08-17
  15. 负荷变化后为什么发电机转速也变化?即如汽轮机发电,当负荷增大或减小时,如不调整,发的电频率会变化?
    2024-08-17
Baidu
map