具体解释潮汐能 地热能 核能
来源:江南全站appapp最新版
时间:2024-08-17 14:26:34
热度:
具体解释潮汐能 地热能 核能【专家解说】:潮汐能 一、定义、应用及意义因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量成为潮汐能。潮
【专家解说】:潮汐能 一、定义、应用及意义
因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量成为潮汐能。潮汐能是以势能形态出现的海洋能,是指海水潮涨和潮落形成的水的势能与动能。
海洋的潮汐中蕴藏着巨大的能量。在涨潮的过程中,汹涌而来的海水具有很大的动能,而随着海水水位的升高,就把海水的巨大动能转化为势能;在落潮的过程中,海水奔腾而去,水位逐渐降低,势能又转化为动能。潮汐能的能量与潮量和潮差成正比。或者说,与潮差的平方和水库的面积成正比。和水利发电相比,潮汐能的能量密度低,相当于微水头发电的水平。世界上潮差的较大值约为13~15m,但一般说来,平均潮差在3m以上就有实际应用价值。潮汐能是因地而异的,不同的地区常常有不同的潮汐系统,他们都是从深海潮波获取能量,但具有各自独特的特征。景观抄袭很复杂,但对于任何地方的潮汐都可以进行准确预报。
潮汐能的利用方式主要是发电。潮汐发电是利用海湾、河口等有利地形,建筑水堤,形成水库,以便于大量蓄积海水,并在坝中或坝旁建造水利发电厂房,通过水轮发电机组进行发电。只有出现大潮,能量集中时,并且在地理条件适于建造潮汐电站的地方,从潮汐中提取能量才有可能。虽然这样的场所并不是到处都有,但世界各国都已选定了相当数量的适宜开发潮汐电站的站址。
发展像潮汐能这样的新能源,可以间接使大气中的CO2含量的增加速度减慢。潮汐是一种世界性的海平面周期性变化的现象,由于受月亮和太阳这两个万有引力源的作用,海平面每昼夜有两次涨落。潮汐作为一种自然现象,为人类的航海、捕捞和晒盐提供了方便,更值得指出的是,它还可以转变成电能,给人带来光明和动力。
二、发电原理及发电形式
潮汐发电与普通水利发电原理类似,通过出水库,在涨潮时将海水储存在水库内,以势能的形式保存,然后,在落潮时放出海水,利用高、低潮位之间的落差,推动水轮机旋转,带动发电机发电。差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐发电的水轮机结构要适合低水头、大流量的特点。潮水的流动与河水的流动不同,它是不断变换方向的,潮汐发电有以下三种形式:
(1)单池单向发电
(2)单池双向发电
(3)双池双向发电
三、应用现状与应用前景
到目前为止,由于常规电站廉价电费的竞争,建成投产的商业用潮汐电站不多。然而,由于潮汐能蕴藏量的巨大和潮汐发电的许多优点,人们还是非常重视对潮汐发电的研究和试验。
据海洋学家计算,世界上潮汐能发电的资源量在10亿千瓦以上,也是一个天文数字。潮汐能普查计算的方法是,首先选定适于建潮汐电站的站址,再计算这些地点可开发的发电装机容量,叠加起来即为估算的资源量。
20世纪初,欧、美一些国家开始研究潮汐发电。第一座具有商业实用价值的潮汐电站是1967年建成的法国郎斯电站。该电站位于法国圣马洛湾郎斯河口。郎斯河口最大潮差13.4米,平均潮差8米。一道750米长的大坝横跨郎斯河。坝上是通行车辆的公路桥,坝下设置船闸、泄水闸和发电机房。郎斯潮汐电站机房中安装有24台双向涡轮发电机,涨潮、落潮都能发电。总装机容量24万千瓦,年发电量5亿多度,输入国家电网。
1968年,前苏联在其北方摩尔曼斯克附近的基斯拉雅湾建成了一座800千瓦的试验潮汐电站。1980年,加拿大在芬地湾兴建了一座2万干瓦的中间试验潮汐电站。试验电站、中试电站,那是为了兴建更大的实用电站做论证和准备用的。
世界上适于建设潮汐电站的20几处地方,都在研究、设计建设潮汐电站。其中包括:美国阿拉斯加州的库克湾、加拿大芬地湾、英国塞文河口、阿根廷圣约瑟湾、澳大利亚达尔文范迪门湾、印度坎贝河口、俄罗斯远东鄂霍茨克海品仁湾、韩国仁川湾等地。随着技术进步,潮汐发电成本的不断降低,进入2l世纪,将不断会有大型现代潮汐电站建成使用。
我国潮汐能的理论蕴藏量达到1.1亿千瓦,在我国沿海,特别是东南沿海有很多能量密度较高,平均潮差4~5m,最大潮差7~8m。其中浙江、福建两省蕴藏量最大,约占全国的80.9%。我国的江夏潮汐实验电站,建于浙江省乐清湾北侧的江夏港,装机容量3200kW,于1980年正式投入运行。
潮汐发电的主要研究与开发国家包括法国、前苏联、加拿大、中国和英国等,它是海洋能中技术最成熟和利用规模最大的一种。全世界潮汐电站的总装机容量为265MW。
我国水力资源的蕴藏量达6.8亿kW,约占全世界的1/6,居世界第1位,建成后的长江三峡水电站将是世界上最大的水力发电站,装机容量1820万kW [编辑本段]潮汐能的开发利用 潮汐能是一种不消耗燃料、没有污染、不受洪水或枯水影响、用之不竭的再生能源。在海洋各种能源中,潮汐能的开发利用最为现实、最为简便。我国早在20世纪50年代就已开始利用潮汐能,在这一方面是世界上起步较早的国家。1956年建成的福建省浚边潮汐水轮泵站就是以潮汐作为动力来扬水灌田的。到了1958年,潮汐电站便一下子在全国遍地开花。据当年10月份召开的“全国第一次潮力发电会议”(也是世界上第一次全国性开发利用潮力发电的会议)统计,已建成的潮汐电站就有41座,在建的还有88座。装机容量有大到144千瓦的,也有小到仅为5千瓦的。主要都用于照明和带动小型农用设施。如1959年建成的浙江温岭县沙山潮汐动力站,1961年进一步建为电站,装机容量仅40千瓦,每年可发电10万千瓦·时,原建和改建总投资仅4万元(人民币,下同)。据1986年统计,其发电累计收入已超过投资的10多倍。目前我国尚在运行的潮汐电站还有近10座,其中浙江乐清湾的江厦潮汐电站,造价与600千瓦以下的小水电站相当,第一台机组于1980年开始发电,1985年底全面建成,年发电量可达1070万千瓦·时,每千瓦·时电价只要0.067元。每年自身经济效益,包括发电67万元,水产养殖74万元和农垦收入190万元,共计可达330万元。社会效益,以每千瓦·时电可创社会产值5万元计,可达5000万元。这是我国,也是亚洲最大的潮汐电站,仅次于法国朗斯潮汐电站和加拿大安纳波里斯潮汐电站,居世界第三位。因此利用潮汐发电并不神秘,也并非遥不可及。
潮汐能是潮差所具有的势能,开发利用的基本方式同建水电站差不多:先在海湾或河口筑堤设闸,涨潮时开闸引水入库,落潮时便放水驱动水轮机组发电,这就是所谓“单库单向发电”。这种类型的电站只能在落潮时发电,一天两次,每次最多5小时。
为提高潮汐的利用率,尽量做到在涨潮和落潮时都能发电,人们便使用了巧妙的回路设施或双向水轮机组,以在涨潮进水和落潮出水时都能发电,这就是“单库双向发电”,像上述江厦潮汐电站就属这种类型。
然而,这两种类型都不能在平潮(没有水位差)或停潮时水库中水放完的情况下发出电压比较平稳的电力。于是人们又想出了配置高低两个不同的水库来进行双向发电,这就是“双库双向发电”。这种方式不仅在涨落潮全过程中都可连续不断发电,还能使电力输出比较平稳。它特别适用于那些孤立海岛,使海岛可随时不间断地得到平稳的电力供应。像浙江省玉环县茅蜒岛上的海山潮汐电站就属这种类型。它有上下两个蓄潮水库,并配有小型抽水蓄能电站。这样,它每月可发电25天,产电10000千瓦·时。为了抽水蓄能,它每月要以3千瓦·时换1千瓦·时的代价用去5000千瓦·时电来获得供电的持续性和均衡性,故有一定的电力损失。
从总体上看,现今潮能开发利用的技术难题已基本解决,国内外都有许多成功的实例,技术更新也很快。
作为国外技术进步标志的法国朗斯潮汐发电站,1968年建成,装有24台具有能正反向发电的灯泡式发电机组,转轮直径为5.35米,单机容量1万千瓦,年发电量达5.4亿千瓦·时。1984年建成的加拿大安纳波利斯潮汐电站,装有1台容量为世界最大的2万千瓦单向水轮机组,转轮直径为7.6米,发电机转子设在水轮机叶片外缘,采用了新型的密封技术,冷却快,效率高,造价比法国灯泡式机组低15%,维修也很方便。
我国自行设计的潮汐电站中,江厦电站比较正规,技术也较成熟。该电站原设计装6台单机容量为500千瓦的灯泡式机组,实际上只安装了5台,总容量就达到了3200千瓦。单机容量有500千瓦、600千瓦和700千瓦三种规格,转轮直径为2.5米。在海上建筑和机组防锈蚀、防止海洋生物附着等方面也以较先进的办法取得了良好效果。尤其是最后两台机组,达到了国外先进技术水平,具有双向发电、泄水和泵水蓄能多种功能,采用了技术含量较高的行星齿轮增速传动机构,这样既不用加大机组体积,又增大了发电功率,还降低了建筑的成本。
潮汐发电利用的是潮差势能,世界上最高的潮差也不过10多米,在我国潮差高才达9米,因此不可能像水力发电那样利用几十米、百余米的水头发电,潮汐发电的水轮机组必须适应“低水头、大流量”的特点,水轮做得较大。但水轮做大了,配套设施的造价也会相应增大。于是,如何解决这个问题,就成为反映其技术水平高低的一种标志。1974年投产的广东甘竹滩洪潮电站就是一个成功的代表。它的特点是洪潮兼蓄,只要有0.3米高的落差就能发电,甘竹滩电站的总装机容量为5000千瓦,平均年发电1030万千瓦·时。它的转轮直径为3米,加上大量采用水泥代用构件,成本较低,对民办小型潮汐电站很有借鉴意义。
潮汐发电虽然并不神秘,但仍须尊重客观规律,才能获得成功,取得良好效益。否则,光凭主观愿望和热情,虽然一时可以建成许多潮汐电站,但最后往往会因为实用价值不大而被放弃。
地热能〔Geothermal Energy〕是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达7000摄氏度,而在80至100公英里的深度处,温度会降至650摄氏度至1200摄氏度。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。地热能是可再生资源。 [编辑本段]划分 离地球表面5000米深,15℃以上的岩石和液体的总含热量,据推算约为14.5×1025焦耳(J),约相当于4948万亿吨(t)标准煤的热量。地热来源主要是地球内部长寿命放射性同位素热核反应产生的热能。按照其储存形式,地热资源可分为蒸汽型、热水型、地压型、干热岩型和熔岩型5大类。
地热资源按温度的划分。中国一般把高于150℃的称为高温地热,主要用于发电。低于此温度的叫中低温地热,通常直接用于采暖、工农业加温、水产养殖及医疗和洗浴等。截止1990年底,世界地热资源开发利用于发电的总装机容量为588万千瓦,地热水的中低温直接利用约相当于1137万千瓦。 [编辑本段]分布 地热能集中分布在构造板块边缘一带,该区域也是火山和地震多发区。如果热量提取的速度不超过补充的速度,那么地热能便是可再生的。地热能在世界很多地区应用相当广泛。据估计,每年从地球内部传到地面的热能相当于100PW·h。不过,地热能的分布相对来说比较分散,开发难度大。
据美国地热资源委员会(GRC)1990年的调查,世界上18个国家有地热发电,总装机容量5827.55兆瓦,装机容量在100兆瓦以上的国家有美国、菲律宾、墨西哥、意大利、新西兰、日本和印尼。我国的地热资源也很丰富,但开发利用程度很低。主要分布在云南、西藏、河北等省区。
世界地热资源主要分布于以下5个地热带:
①环太平洋地热带。世界最大的太平洋板块与美洲、欧亚、印度板块的碰撞边界,即从美国的阿拉斯加、加利福尼亚到墨西哥、智利,从新西兰、印度尼西亚、菲律宾到中国沿海和日本。世界许多地热田都位于这个地热带,如美国的盖瑟斯地热田,墨西哥的普列托、新西兰的怀腊开、中国台湾的马槽和日本的松川、大岳等地热田。
②地中海、喜马拉雅地热带。欧亚板块与非洲、印度板块的碰撞边界,从意大利直至中国的滇藏。如意大利的拉德瑞罗地热田和中国西藏的羊八井及云南的腾冲地热田均属这个地热带。
③大西洋中脊地热带。大西洋板块的开裂部位,包括冰岛和亚速尔群岛的一些地热田。
④红海、亚丁湾、东非大裂谷地热带。包括肯尼亚、乌干达、扎伊尔、埃塞俄比亚、吉布提等国的地热田。
⑤其他地热区。除板块边界形成的地热带外,在板块内部靠近边界的部位,在一定的地质条件下也有高热流区,可以蕴藏一些中低温地热,如中亚、东欧地区的一些地热田和中国的胶东、辽东半岛及华北平原的地热田。 [编辑本段]利用 地热能的利用可分为地热发电和直接利用两大类,而对于不同温度的地热流体可能利用的范围如下:
1、200~400℃直接发电及综合利用;
2、150~200℃双循环发电,制冷,工业干燥,工业热加工;
3、100~150℃双循环发电,供暖,制冷,工业干燥,脱水加工,回收盐类,罐头食品;
4、50~100℃供暖,温室,家庭用热水,工业干燥;
5、20~50℃沐浴,水产养殖,饲养牲畜,土壤加温,脱水加工。
现在许多国家为了提高地热利用率,而采用梯级开发和综合利用的办法,如热电联产联供,热电冷三联产,先供暖后养殖等。 [编辑本段]作用 人类很早以前就开始利用地热能,例如利用温泉沐浴、医疗,利用地下热水取暖、建造农作物温室、水产养殖及烘干谷物等。但真正认识地热资源,并进行较大规模的开发利用却是始于20世纪中叶。
1.地热发电
地热发电是地热利用的最重要方式。高温地热流体应首先应用于发电。 地热发电和火力发电的原理是一样的,都是利用蒸汽的热能在汽轮机中转变为机械能,然后带动发电机发电。所不同的是,地热发电不象火力发电那样要装备庞大的锅炉,也不需要消耗燃料,它所用的能源就是地热能。地热发电的过程,就是把地下热能首先转变为机械能,然后再把机械能转变为电能的过程。要利用地下热能,首先需要有“载热体”把地下的热能带到地面上来。目前能够被地热电站利用的载热体,主要是地下的天然蒸汽和热水。按照载热体类型、温度、压力和其它特性的不同,可把地热发电的方式划分为蒸汽型地热发电和热水型地热发电两大类。
(1)蒸汽型地热发电
蒸汽型地热发电是把蒸汽田中的干蒸汽直接引入汽轮发电机组发电,但在引入发电机组前应把蒸汽中所含的岩屑和水滴分离出去。这种发电方式最为简单,但干蒸汽地热资源十分有限,且多存于较深的地层,开采技术难度大,故发展受到限制(参考《资源》栏目有关文章)。主要有背压式和凝汽式两种发电系统。
(2)热水型地热发电
热水型地热发电是地热发电的主要方式。目前热水型地热电站有两种循环系统:a、闪蒸系统。闪蒸系统如图1所示。当高压热水从热水井中抽至地面,于压力降低部分热水会沸腾并“闪蒸”成蒸汽,蒸汽送至汽轮机做功;而分离后的热水可继续利用后排出,当然最好是再回注人地层。 b、双循环系统。双循环系统的流程如图2所示。地热水首先流经热交换 器,将地热能传给另一种低沸点的工作流体,使之沸腾而产生蒸汽。蒸汽进入汽轮机做功后进入凝汽器,再通过热交换器而完成发电循环。地热水则从热交换器回注人地层。这种系统特别适合于含盐量大、腐蚀性强和不凝结气体含量高的地热资源。发展双循环系统的关键技术是开发高效的热交换器。
2.地热供暖
将地热能直接用于采暖、供热和供热水是仅次于地热发电的地热利用方式。因为这种利用方式简单、经济性好,备受各国重视,特别是位于高寒地区的西方国家,其中冰岛开发利用得最好。该国早在1928年就在首都雷克雅未克建成了世界上第一个地热供热系统,现今这一供热系统已发展得非常完善,每小时可从地下抽取7740t80℃的热水,供全市11万居民使用。由于没有高耸的烟囱,冰岛首都已被誉为“世界上最清洁无烟的城市”。此外利用地热给工厂供热,如用作干燥谷物和食品的热源, 用作硅藻土生产、木材、造纸、制革、纺织、酿酒、制糖等生产过程的热源也是大有前途的。目前世界上最大两家地热应用工厂就是冰岛的硅藻土厂和新西兰的纸桨加工厂。我国利用地热供暖和供热水发展也非常迅速,在京津地区已成为地热利用中最普遍的方式。
3.地热务农
地热在农业中的应用范围十分广阔。如利用温度适宜的地热水灌溉农田,可使农作物早熟增产;利用地热水养鱼,在28℃水温下可加速鱼的育肥,提高鱼的出产率;利用地热建造温室,育秧、种菜和养花;利用地热给沼气池加温,提高沼气的产量 等。 将地热能直接用于农业在我国日益广泛,北京、天津、西藏和云南等地都建有面积大小不等的地热温室。各地还利用地热大力发展养殖业,如培养菌种、养殖非洲鲫鱼、鳗鱼、罗非鱼、罗氏沼虾等。
4.地热行医
地热在医疗领域的应用有诱人的前景,目前热矿水就被视为一种宝贵的资源,世界各国都很珍惜。由于地热水从很深的地下提取到地面,除温度较高外,常含有一些特殊的化学元素,从而使它具有一定的医疗效果。如合碳酸的矿泉水供饮用,可调节胃酸、平衡人体酸碱度;含铁矿泉水饮用后,可治疗缺铁贫血症; 氢泉、硫水氢泉洗浴可治疗神经衰弱和关节炎、皮肤病等。 由于温泉的医疗作用及伴随温泉出现的特殊的地质、地貌条 件,使温泉常常成为旅游胜地,吸引大批疗养者和旅游者。在日本就有1500多个温泉疗养院,每年吸引1亿人到这些疗养院休养。我国利用地热治疗疾病的历史悠久,含有各种矿物元素的温泉众多,因此充分发挥地热的医疗作用,发展温泉疗养行业是大有可为的。
未来随着与地热利用相关的高新技术的发展,将使人们能更精确地查明更多的地热资源;钻更深的钻井将地热从地层深处取出,因此地热利用也必将进入一个飞速发展的阶段。
地热能在应用中要注意地表的热应力承受能力,不能形成过大的覆盖率,这会对地表温度和环境产生不利的影响!
因此,需要我们充分计算!
5. 中国地热能的发展预测
根据我国地热开发利用现状、资源潜力评估和国家、地区经济发展预测,地热产业规划目标、任务初期,中期,远期三个阶段。
一、长期目标与任务
1)高温地热发电装机达到75~100MW
主要藏滇高温地热勘探开发200~250℃以上深部热储。力争单井地热发电潜力达到
10MW以上,单机发电10MW以上。
2.地热采暖达到2200~2500m2
主要在北方京、津、冀地区,环渤海经济区、京九产业带、东北松辽盆地、陕中盆地、宁夏银川平原地区发展地热采暖、地热高科技农业,建立地热示范区。单井地热采暖工程力争达到15万m2。
二、中期目标与任务
1.高温地热发电装机达到40~50MW
主要在西藏羊八井开发利用已有深部高温热储,使ZK4001地热井得以利用(温度250℃以上,发电10MW);
积极建设西藏羊易地热电站,拟定装机12MW;
在滇西腾冲高温地热田力争完成250℃以上1~2口地热生产井施工,发电潜力12MW以上。
2.地热采暖达到1500万m2
主要在京津冀,京九沿线的山东西部,松辽盆地的大庆地区建立地热示范区。
单井地热采暖达10~15万m2,单个地热采暖区50~100万m2。在已开发的地热田建立生产回灌系统。
三、初期目标与任务
1.高温地热发电
主要在羊八井地热电站,对现有地热发电装备进行完善、优化,稳发25MW;
力争利用ZK4001孔高温地热流体 ,增发、满发、达到总装机30MW;
努力完成滇西腾冲高温地热井施工,打出250℃地热流体,力争发电潜力达到12MW。
2.地热采暖达到950万m2
主要在京津地区、京九沿线的山东西部,松辽盆地的大庆地区,完善、优化已有地热供热工程,选点建立示范区。
总之,至2010年地热开发利用总量:地热发电装机达到75~100MW,地热采暖达到2500m2。热能利用总计约相当于1500万吨标煤当量。
四、存在的障碍
1.地热管理体制和开发利用工程、项目的适合市场经济的运行机制没有建立起来,旧的计划经济管理体制、运行机制还没有完成改变,影响地热产业快速健康发展;
2.地热资源的勘探、开发具有高投入、高风险和知识密集的新兴产业,化解风险的机制和社会保障制度尚未建立起来,影响投资者、开发者的信心、影响了地热产业发展;
3.系统的技术规程、规范和技术标准尚不健全和完善。 [编辑本段]现状 作为一种高效节能的可再生能源技术,地源热泵技术近年来引起社会的重视。目前,我国除青海、云南、贵州等少数省区外,其他省区都在不同程度地推广地源热泵技术。目前,全国已安装地源热泵系统的建筑面积超过3000万平方米。据不完全统计,截至2006年底,中国地源热泵市场年销售额已超过50亿元,并以20%的速度在增长。
地热能是指在当前的技术经济和地质环境条件下能够科学、合理的开发出来的,地壳岩石中的热能量和地热流体中的热能量及其伴生的有用组分。
-
为什么核能是一次能源?2024-08-17
-
美国的核能发电占总发电量的比例是多少?2024-08-17
-
地热能是不是不污染环境又经济的能源?2024-08-17
-
能源危机是一个全球性的共同问题,科学家们正在积极探索核能的开发与和平利用,其中可控热核反应向人类展2024-08-17
-
核能是不是可再生能源阿?2024-08-17
-
世界上,核能发电量最多的国家是?2024-08-17
-
下列能源中属于不可再生能源的是 A. 地热能 B. 水能 C. 核能 D. 潮汐能2024-08-17
-
请问新能源汽车、风能、核能、太阳能等板块都有哪些股票?2024-08-17
-
为什么桃核能辟邪?还有其他的东西吗?2024-08-17
-
核能算不算自然资源?跪求答案啊,大后天会考啊,速度回答又分啊2024-08-17
-
下列属于可再生资源的是 A 分能 B 核能 C 太阳能 D 潮汐能2024-08-17
-
下列各组资源,全是可再生资源的一组是( )A.石油 煤 沼气B.水资源 土地 太阳能C.森林 核能 铁矿D2024-08-17
-
地热能是陆地自然资源吗2024-08-17
-
下列资源中助于非可再生资源的是?A.太阳能B.水能C.风能D.核能2024-08-17
-
下列资源中,属于可再生资源的是( ) A.煤炭、石油、天然气 B.水能、风能、核能 C.森林资2024-08-17