首页 > 专家说

求100道解放程、方程组、一元一次不等是、10道几何证明题、10道列方程组或者列不等式解应用题。急用快快

来源:江南全站appapp最新版
时间:2024-08-17 11:41:43
热度:

求100道解放程、方程组、一元一次不等是、10道几何证明题、10道列方程组或者列不等式解应用题。急用快快【专家解说】:用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一

【专家解说】:用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套? 分析:因为现在总有36张铁皮制盒身和盒底.所以x+y=36.公式;用制盒身的张数+用制盒底的张数=总共制成罐头盒的白铁皮的张数36.得出方程(1).又因为现在一个盒身与2个盒底配成一套罐头盒.所以;盒身的个数*2=盒底的个数.这样就能使它们个数相等.得出方程(2)2*16x=40y x+y=36(1) 2*16x=40y(2) 由(1)得36-y=x(3) 将(3)代入(2)得; 32(36-y)=40y 1、把200千米的水引到城市中来,这个任务交给了甲,乙两个施工队,工期50天,甲,乙两队合作了30天后,乙队因另有任务需离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天比原来多修0.4千米,结果如期完成。问:甲乙两队原计划各修多少千米? 解:设甲乙原来的速度每天各修a千米,b千米 根据题意 (a+b)×50=200(1) 10×(a+0.6)+40a+30b+10×(b+0.4)=200(2) 化简 a+b=4(3) a+0.6+4a+3b+b+0.4=20 5a+4b=19(4) (4)-(3)×4 a=19-4×4=3千米 b=4-3=1千米 甲每天修3千米,乙每天修1千米 甲原计划修3×50=150千米 乙原计划修1×50=50千米 2、小华买了4支自动铅笔和2支钢笔,共付14元;小兰买了同样的1支自动铅笔和2支钢笔,共付11元。求自动笔的单价,和钢笔的单价。 解:设自动铅笔X元一支钢笔Y元一支 4X+2Y=14 X+2Y=11 解得X=1 Y=5 则自动铅笔单价1元 钢笔单价5元 3、据统计2009年某地区建筑商出售商品房后的利润率为25%。 (1)2009年该地区一套总售价为60万元的商品房,成本是多少? (2)2010年第一季度,该地区商品房每平方米价格上涨了2a元,每平方米成本仅上涨了a元,这样60万元所能购买的商品房的面积比2009年减少了20平方米,建筑商的利润率达到三分之一,求2010年该地区建筑商出售的商品房每平方米的利润。 解:(1)成本=60/(1+25%)=48万元 (2)设2010年60万元购买b平方米 2010年的商品房成本=60/(1+1/3)=45万 60/b-2a=60/(b+20)(1) 45/b-a=48/(b+20)(2) (2)×2-(1) 30/b=36/(b+20) 5b+100=6b b=100平方米 2010年每平方米的房价=600000/100=6000元 利润=6000-6000/(1+1/3)=1500元 三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆? 解:设还需要B型车a辆,由题意得 20×5+15a≥300 15a≥200 a≥40/3 解得a≥13又1/3. 由于a是车的数量,应为正整数,所以x的最小值为14. 答:至少需要14台B型车. 四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时? 解:设甲场应至少处理垃圾a小时 550a+(700-55a)÷45×495≤7370 550a+(700-55a)×11≤7370 550a+7700-605a≤7370 330≤55a a≥6 甲场应至少处理垃圾6小时 五、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。有多少间宿舍,多少名女生? 解:设有宿舍a间,则女生人数为5a+5人 根据题意 a>0(1) 0<5a+5<35(2) 0<5a+5-[8(a-2)]<8(3) 由(2)得 -5<5a<30 -1<a<6 由(3) 0<5a+5-8a+16<8 -21<-3a<-13 13/3<a<7 由此我们确定a的取值范围 4又1/3<a<6 a为正整数,所以a=5 那么就是有5间宿舍,女生有5×5+5=30人 六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。 (1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元? 解:手机原来的售价=2000元/部 每部手机的成本=2000×60%=1200元 设每部手机的新单价为a元 a×80%-1200=a×80%×20% 0.8a-1200=0.16a 0.64a=1200 a=1875元 让利后的实际销售价是每部1875×80%=1500元 (2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部? 20万元=200000元 设至少销售b部 利润=1500×20%=300元 根据题意 300b≥200000 b≥2000/3≈667部 至少生产这种手机667部。 七、我市某村计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号的沼气池的占地面积,使用农户数以及造价如下表: 型号占地面积(平方米/个)使用农户数(户/个)造价(万元/个) A15182 B20303 已知可供建造的沼气池占地面积不超过365平方米,该村共有492户. (1).满足条件的方法有几种?写出解答过程. (2).通过计算判断哪种建造方案最省钱? 解:(1)设建造A型沼气池x个,则建造B型沼气池(20-x)个 18x+30(20-x)≥492 18x+600-30x≥492 12x≤108 x≤9 15x+20(20-x)≤365 15x+400-20x≤365 5x≥35 x≤7 解得:7≤x≤9 ∵x为整数∴x=7,8,9,∴满足条件的方案有三种. (2)设建造A型沼气池x个时,总费用为y万元,则: y=2x+3(20-x)=-x+60 ∵-1<0,∴y随x增大而减小, 当x=9时,y的值最小,此时y=51(万元) ∴此时方案为:建造A型沼气池9个,建造B型沼气池11个 解法②:由(1)知共有三种方案,其费用分别为: 方案一:建造A型沼气池7个,建造B型沼气池13个, 总费用为:7×2+13×3=53(万元) 方案二:建造A型沼气池8个,建造B型沼气池12个, 总费用为:8×2+12×3=52(万元) 方案三:建造A型沼气池9个,建造B型沼气池11个, 总费用为:9×2+11×3=51(万元) ∴方案三最省钱. 八、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少个? 解:设学生有a人 根据题意 3a+8-5(a-1)<3(1) 3a+8-5(a-1)>0(2) 由(1) 3a+8-5a+5<3 2a>10 a>5 由(2) 3a+8-5a+5>0 2a<13 a<6.5 那么a的取值范围为5<a<6.5 那么a=6 有6个学生,书有3×6+8=26本 九、某水产品市场管理部门规划建造面积为2400m²的集贸大棚。大棚内设A种类型和B种类型的店面共80间。每间A种类型的店面的平均面积为28m²月租费为400元;每间B种类型的店面的平均面积为20m²月租费为360元。全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%。试确定有几种建造A,B两种类型店面的方案。 解:设A种类型店面为a间,B种为80-a间 根据题意 28a+20(80-a)≥2400×80%(1) 28a+20(80-a)≤2400×85%(2) 由(1) 28a+1600-20a≥1920 8a≥320 a≥40 由(2) 28a+1600-20a≤2040 8a≤440 a≤55 40≤a≤55 方案:AB 4040 4139 …… 5525 一共是55-40+1=16种方案 十、某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的87.5%付款。某单位需购买5张桌子和若干把椅子(不少于10把)。如果已知要购买X把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱? 设需要买x(x≥10)把椅子,需要花费的总前数为y 第一种方案: y=300x5+60×(x-10)=1500+60x-600=900+60x 第二种方案: y=(300x5+60x)×87.5%=1312.5+52.5x 若两种方案花钱数相等时 900+60x=1312.5+52.5x 7.5x=412.5 x=55 当买55把椅子时,两种方案花钱数相等 大于55把时,选择第二种方案 小于55把时,选择第一种方案 十一、某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解答下列问题: 甲乙 A20G40G B30G20G (1)有几种符合题意的生产方案?写出解答过程; (2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低? 解:(1)设生产A型饮料需要x瓶,则B型饮料需要100-x瓶 根据题意 20x+30(100-x)≤2800(1) 40x+20(100-x)≤2800(2) 由(1) 20x+3000-30x≤2800 10x≥200 x≥20 由(2) 40x+2000-20x≤2800 20x≤800 x≤40 所以x的取值范围为20≤x≤40 因此方案有 生产AB 2080 2179 …… 4060 一共是40-20+1=21种方案 (2)y=2.6x+2.8×(100-x)=2.6x+280-2.8x=280-0.2x 此时y为一次函数,因为20≤x≤40 那么当x=40时,成本最低,此时成本y=272元 y=16 又y=16代入(1)得:x=20 所以;x=20 y=16 答:用20张制盒身,用16制盒底. 现在父母年龄的和是子女年龄的6倍;2年前,父母年龄的和子女年龄的和是子女年龄的和的10倍;父母年龄的和是子女年龄的3倍。问:共有子女几日? 解: 父母年龄之和为X子女年龄之和为Y设有N个子女 X=6Y (X-4)=10(Y-n*2) 6Y-4=10Y-20N 4Y=20N-4 Y=5N-1 (X+12)=3(Y+n*6) 6Y+12=3Y+18N 3Y=18N-12 Y=6N-4 6N-4=5N-1 N=3 答:有3个子女 甲,乙两人分别从A、A两地同时相向出发,在甲超过中点50千米处甲、乙两人第一次相遇,甲、乙到达B、A两地后立即返身往回走,结果甲、乙两人在距A地100米处第二次相遇,求A、B两地的距离 甲、乙两人从A地出发到B地,甲不行、乙骑车。若甲走6千米,则在乙出发45分钟后两人同时到达B地;若甲先走1小诗,则乙出发后半小时追上甲,求A、B两地的距离。 设甲的速度为a千米/小时,乙的速度为b千米/小时 45分钟=3/4小时 6+3/4a=3/4b a=(b-a)x1/2 化简 b-a=8(1) 3a=b(2) (1)+(2) 2a=8 a=4千米/小时 b=3x4=12千米/小时 AB距离=12x3/4=9千米 工厂与A.B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000的产品运到B地。已知公路运价为1.5元/(吨、千米),铁路运价为1.2元/(吨、千米),且这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和为多少元??? 张栋同学到百货大楼买了两种型号的信封,共30个,其中买A型号的信封用了1元5角,买B型号的信封用了1元5角,B型号的信封每个比A型号的信封便宜2分。两种型号的信封的单价各是多少? 解:设A型信封的单价为a分,则B型信封单价为a-2分 设买A型信封b个,则买B型信封30-b个 1元5角=150分 ab=150(1) (a-2)(30-b)=150(2) 由(2) 30a-60-ab+2b=150 把(1)代入 30a-150+2b=210 30a+2b=360 15a+b=180 b=180-15a 代入(1) a(180-15a)=150 a²-12a+10=0 (a-6)²=36-10 a-6=±√26 a=6±√26 a1≈11分,那么B型信封11-2=9分 a2≈0.9分,那么B型信封0.9-2=-1.1不合题意,舍去 A型单价11分,B型9分 2003年财政部发行了三年期和五年期的凭证式国库券共50000元,如果其中的五年期国库券到期后的所得利息多2553,那么两种国库券各多少元 有一群鸽子,其中一部分在树上欢歌,另一部分在地上,树上的一只鸽子对地上的鸽子说:“若从树上飞下去一只,则树上,树下的鸽子就一样多了”。你知道树上,树下各有多少只鸽子吗? 已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从一开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度? 设火车的速度为a米/秒,车身长为b米 1分钟=60秒 60a=1000+b 40a=1000-b 100a=2000 a=20米/秒 b=60x20-1000 b=200米 车身长为200米。车速为20米/秒
Baidu
map