首页 > 行业资讯

诠释LED电源拓扑如何完美提升LED照明能效

来源:江南全站appapp最新版
时间:2015-08-04 21:52:47
热度:

诠释LED电源拓扑如何完美提升LED照明能效稳定电流驱动LED维持固定亮度LED驱动仍面临许多挑战,要维持固定的亮度,需要以稳定电流驱动LED,且不受到输入电压的影响,相较于白热灯

稳定电流驱动LED维持固定亮度   LED驱动仍面临许多挑战,要维持固定的亮度,需要以稳定电流驱动LED,且不受到输入电压的影响,相较于白热灯泡单纯接上电池作为电源的挑战更大。   LED具有顺向V-I特性,与二极管情形类似。白光LED的开启阈值约为3.5伏特,在此阈值之下,通过LED的电流量非常少。超过此阈值之后,电流会以指数方式增强,造成顺向电压递增,LED因而成为具有串联电阻的电压来源模型。不过须要注意,此模型仅在直流电流单一操作的情况下有效,如果LED中的直流电流改变,则模型中的电阻也应该改变,以显现新的操作电流。在大量顺向电流的情况下,LED中所消耗的电力会提升装置温度,改变顺向压降与动态阻抗,决定LED阻抗时,务必考虑环境的热度。   如果LED是由降压稳压器驱动,除了直流电流之外,LED常会传导电感的交流链波电流,根据所选择的输出滤波器安排情形而定。这会增加LED中电流的RMS强度,也会增加其功率的消耗,并使结点温度升高,对LED的寿命有重大影响。   如果在灯光输出上设立70%的限制作为LED的使用年限,便可增加LED的寿命,由74℃的15,000小时,延长到63℃的40,000小时。LED中功率流失的判定方法,是将LED电阻乘上RMS电流的平方,加上由平均电流乘上顺向压降的数值。由于结点温度是由平均功率所决定,即使出现大量的链波电流,对功率消耗的影响也很小。举例来说,在降压稳压器当中,相等于直流输出电流的峰间链波电流(Ipk-pk=Iout),总功率损耗将增加不到10%。   如果是大于此程度相当多的情况,则必须降低供应的交流链波电流,以维持结点温度及操作寿命。在此有一个实用的基本原则,就是结点温度降低10℃,半导体的寿命就会增加两倍。实际上大部分的设计,因为电感限制的关系,倾向使用低上许多的链波电流。另外,LED中的峰值电流,不应超过制造商指定的最大安全操作额定值。   LED应用于多种领域需多种电源拓扑支持   表1的信息可供作选择LED驱动器最佳切换拓扑的参考。除了这些拓扑之外,也可以使用简单的电流限制电阻或是线性稳压器,不过这些方法通常会耗用过多功率。输入电压范围、驱动的LED数目、LED电流、隔离、电磁干扰(EMI)限制以及效能,都是相关的设计参数。大部分的LED驱动电路可分为以下几种拓扑类别:降压、升压、降压升压、SEPIC以及返驰。   图1显示三个基本电源拓扑的例子,第一张图所显示的降压稳压器,可使用于输出电压永远小于输入电压的情形。图1中,降压稳压器改变金属氧化半导体场效晶体管(MOSFET)的导通时间,以控制进入LED的电流。可越过电阻测量电压以进行电流侦测;电阻与LED为串联状态。驱动MOSFET是本方法在设计上的重大挑战,如果从成本及效能的观点来看,建议使用须要浮接闸极驱动的N信道FET。N信道FET须要使用驱动变压器或是浮动驱动电路,两者都可维持电压高于输入电压。   图1也显示替代的降压稳压器(Buck#2)。在此电路中,MOSFET的驱动与接地有关,大幅降低了驱动电路的需求。本电路侦测LED电流的方法为监控FET电流,或是与LED串联的电流侦测电阻。如果采用后者,则须要使用位准移位电路,将此信息送至接地电源,并将简单的设计复杂化。同样显示于图1中的升压转换器,则是在输出电压永远大于输入时使用。   这种拓扑设计容易,因为MOSFET的驱动与接地有关,而电流侦测电阻也是属于接地引用类型。此电路的缺点是在短路时,无法限制通过电感的电流,可以使用保险丝或电路断路器,作为故障保护装置。此外,还有一些较复杂的拓扑可提供这类保护。   图2显示两种降压升压电路,可在输入电压可能大于或小于输出电压的情形下使用。这些电路与前述两种降压拓扑有相同的折冲特点,与电流侦测电阻与门极驱动的位置有关。图2的降压升压拓扑,显示接地参考的闸极驱动。   此拓扑需要位准移位电流侦测讯号,不过反向的升压降压拓扑则具有接地参考的电流侦测及位准移位闸极驱动。如果控制IC与负输出有关,且电流侦测电阻与LED进行交换,即可利用有效的方式配置反向升压降压拓扑。只要适当控制IC,即可直接测量输出电流,也可以直接驱动MOSFET。   降压升压的拓扑方式电流相对较高,举例来说,如果输入及输出电压相同,电感及电源开关电流是输出电流的两倍以上,这对效能及功率消耗会造成负面影响。图3的「升压或降压」拓扑可减轻这些问题,在此电路中会有一个升压功率级,之后则有一个降压功率级。如果输入电压高于输出电压,升压功率级就会提供电压调节,而降压功率级则只传递功率。如果输入电压低于输出电压,则降压功率级提供电压调节,升压功率级传递功率。通常降压及升压的运作,会有一些重迭的时间,因此在变换模式时不会出现死区(Dead-band)。   针对不同LED应用各种电源拓扑应运而生   如同表2所示,LED已广泛运用于各领域,因此需要许多种类的电源拓扑,支持LED的应用。一般而言,必须考虑输入电压、输出电压及对隔离的需求,以做出适当选择。如果输入电压一定大于或小于输出电压,选择就很明确,一定是降压或升压。但如果彼此关系并不明确,便不易做出选择,有非常多的折冲作法,包括效能、成本以及可靠性等等。
Baidu
map