首页 > 行业资讯

风电能之间是如何进行转换的

来源:江南全站appapp最新版
时间:2018-09-04 21:00:17
热度:

风电能之间是如何进行转换的我们看到的这些日夜不停转动的大风车是如何将风能转化成电能的呢?像飞机翅膀一样 风力发电的原理是利用风带动风车叶片旋转,进而驱动发电机发电。风力发电机的叶片

风电能之间是如何进行转换的

我们看到的这些日夜不停转动的大风车是如何将风能转化成电能的呢?

像飞机翅膀一样 风力发电的原理是利用风带动风车叶片旋转,进而驱动发电机发电。风力发电机的叶片从地面看上去给人的感觉较小,但实际上这些叶片很大,普通的风电叶片都有40多米长,而目前最大的风电叶片长度已经超过100米,远超过大型客机的机翼长度。其实,风并非“推”动风轮叶片,而是由于叶片横截面的形状上下不对称,风在通过叶片上方的时候流速大,下方的流速小。这就会导致叶片上方的压强小,下方的压强大,叶片形成叶片上下面的压差,这种压差会产生升力,令风轮旋转。

风机如何保证发电 想要将风能转化成电能,光靠独特的翼型设计是远远不够的。风电机组的风车必须迎着风才能发电。风机工作的时候首先通过风向标寻找到风的方向,然后通过偏航系统将机头旋转到正对风吹来的方向。风是很复杂的,风机会经常测量风向并旋转机头去迎风,使风机更好地匹配风的特性,随着对风角度的增大,发电功率也会飞速增加。此外,风机叶片也会旋转,帮助风机更好的适应风的大小。

直驱永磁技术 传统的风力发电机是利用风带动风车叶片旋转,然后再通过增速机等多个齿轮组将旋转的速度提升后,来驱动发电机发电的。这是一个很长的传动过程,能量在传送过程中必然会出现损耗。

而直驱永磁技术省去齿轮箱等复杂的传送结构,大大减少了损失,提高了发电效率,保证了运行的可靠性。直驱永磁发电的转子由超过1300磁钢组成,核心部件由稀土材料组成,可以在不消耗任何电能的情况下产生强大磁场,保证了机组强大的发电能力。当风吹动叶片后,线圈不断切割磁场线从而产生电能。这就是风能转化成电的原因。

并入电网 风电机组发出的电力,能够直接送入电网供人们使用吗?想要安全的将风电并入电网供人们使用,风机侧电流与入网侧电流就需要经过电箱处理。风机产生的电压处于不断变化的,而电网对流入的电压有严格的要求。这个时候就需要有一个变压器,对已经产生的风电进行处理。经过处理以后,所有的机组就可以输出一个统一的电压,风电就可以实现安全传输了。

Baidu
map