华为自动驾驶的打法
华为自动驾驶的打法在技术路径上,华为的智能驾驶既非从L2向L4演进,也不是L2与L4并行,而是“配置可裁剪的L4”。即先聚焦L4,再用L4的能力反哺L2,L2.5,L3,某种意义上
在技术路径上,华为的智能驾驶既非从L2向L4演进,也不是L2与L4并行,而是“配置可裁剪的L4”。即先聚焦L4,再用L4的能力反哺L2,L2.5,L3,某种意义上就是“升维思考,降维打击”。
依托自身强大的底层研究能力和复杂系统集成能力,华为也踏入智能驾驶领域,提供可剪裁智能计算平台和L4级全栈式解决方案,让企业专注自己的专业领域,缩短自动驾驶汽车推出周期,华为成为继地平线之后又一家有希望打破英伟达和Mobileye芯片垄断的本土自动驾驶供应商。
9月18-19日,在华为2019全联接大会上,华为智能汽车解决方案BU首次系统性地阐述了其智能驾驶业务。
简单地说,华为推出L4级全栈智能驾驶解决方案和MDC计算平台两个产品。这两者都是基于自研的AI芯片、CPU和操作系统,其中,前者展现了华为对复杂系统的强大集成能力,而后者则在商业模式上对产业界开放,欢迎广大产业链上下游合作伙伴参与。
在技术路径上,华为的智能驾驶既非从L2向L4演进,也不是L2与L4并行,而是“配置可裁剪的L4”。即先聚焦L4,再用L4的能力反哺L2,L2.5,L3,某种意义上就是“升维思考,降维打击”。
在去年10月份的全联接大会上,华为发布了AI芯片昇腾310及面向L4级智能驾驶的计算平台MDC 600。基于12nm制程的昇腾310可以8W的功耗达到16 TOPS 的算力。
而据此次全联接大会上公布的内容,目前,华为可提供MDC智能驾驶计算平台和L4全栈解决方案两种方案(以前者为主)。其跟奥迪合作的L4级自动驾驶车队上便搭载了华为L4级全栈智能驾驶解决方案。
当前,华为跟奥迪合作的测试车队规模已达数十辆。
除奥迪外,一汽、沃尔沃(乘用车)、东风、苏州金龙、山东浩睿智能、新石器等公司都已跟华为在自动驾驶方面展开合作。
一
在全联接大会期间,华为副董事长胡厚崑等多位高管在演讲中都提到“华为不是芯片公司,我们不卖芯片”。
具体到智能驾驶业务上,华为并不直接向车企或自动驾驶公司出售芯片,而是提供包括AI芯片、操作系统、算法、支持服务框架、设备管理、开发工具链、信息安全、功能安全在内的MDC智能驾驶计算平台。
自动驾驶域控制器的构建很复杂。倘若华为只向用户提供芯片,则用户拿回去之后还要再找人开发操作系统、算法,并对系统的适配性、耦合性做各种测试,这会是一个十分漫长的过程。
并且,用户自己开发的操作系统和算法,也未必能使芯片的算力最大程度地发挥出来。因此,华为提供的是一个工程化程度最高的开放平台。
MDC平台秉承开放的、平台化的理念,将跟产业链伙伴和商业合作伙伴一起来探索标准、推广标准、实践标准,并为开发者提供一系列标准化的传感器接口、线控接口,并支持和兼容AUTOSAR\ROS,同时,还提供一套功能完整的开发工具链。
因此,车企和自动驾驶公司可在上面开发符合自身需求的自动驾驶应用,或整合来自Tier X们的的应用软件。
有了工程化程度最高的MDC开放平台,车企便只需聚焦于整车技术及决策、规划、控制算法插件,再做一些可提供差异化竞争力的功能软件,其他与自动驾驶相关部分可都交给华为。
Tier 1则可聚焦于传感器、线控等关键技术,而自动驾驶初创公司则可聚焦于算法。
这意味着,车企、Tier 1及自动驾驶初创公司们参与自动驾驶产业的进程将被大大简化、推出自动驾驶汽车的周期会缩短。
前段时间,华为被曝出正在申请高精地图采集资质,当时,便有不少人猜测,华为将成为四维、高德等图商的竞争对手。此外,还有传言说华为正打算做激光雷达。
那么,华为在智能驾驶领域的边界到底在哪里,会不会“什么都做”?
在这次大会上,《建约车评》向华为方面确认后得到的答复是:华为申请图商资质,只是为了方便测绘供测试使用的高精地图。将来量产版的高精地图,华为是向图商购买基础数据,然后再利用华为的AI能力加工。
华为的人工成本很高,去采集底图的性价比不高。况且,人家已经有现成的了,我为什么要亲自去采集?
9月17日,在四维图新召开的用户年度大会上,有华为的管理人员去发表了演讲;而在9月18日下午华为智能汽车分论坛上,四维图新CEO程鹏也到场发表了演讲。此外,四维图新还是华为云的用户。两家公司确为合作关系而非竞争对手。
至于激光雷达,华为研究激光雷达确有其事,并且,鉴于华为在光通信领域和微波通信领域的积累,做激光雷达和毫米波雷达并没有多少技术壁垒,但这并不意味着华为就要亲自去做这些东西。
其实,华为研究激光雷达,主要是为了验证,比如,激光雷达增加多少个,对算力增加的要求是多少、应该怎么去适配等。
华为认为,只有对传感器也有深刻理解,才能提出系统性的解决方案,并将上中下游打通,进而通过大量的路测数据来进行循环和迭代,再推动芯片技术的快速成熟。
此外,只有将上下游打通,才能建立起对行业的深度认知,才能具备整合能力,才会知道该怎么跟别人合作。
二
进入2019年以后,自动驾驶产业有一个明显的变化是:两大芯片巨头英伟达和Mobileye提L4的频率比以前少了,而曾在2017年喊出2019-2020年间L3量产的一众主机厂们也开始集体沉默了。
反倒是,声量一直不大的L2开始受到重视。今年,宝马、丰田等国际车企纷纷推出了L2级量产车,蔚来、小鹏、车和家等中国的造车新势力们也纷纷实现L2的量产。2019年,被认为是L2量产的元年。
那么,今后几年,华为在自动驾驶板块的重点会是L4还是L2?
实际上,华为内部,并不认可L4、L3、L2这样的划分。
在9月18日的演讲中,华为智能汽车解决方案BU总裁王军说:
“主流对自动驾驶技术等级从L0到L5的划分,是仅根据人为操作的参与程度来定义自动化的等级,这并不太准确。因为,相同的硬件和算法,面对不同场景所能达到的自动驾驶等级有较大差异。
传统的自动驾驶分级只是对技术实现的评估,而不是针对特定场景的评估。但用户更关注的是适合场景带来的体验提升、效率提升及成本降低,而不是纠结技术概念。因此,对自动驾驶等级不区分场景,就不能有效反应用户在特定场景下的体验。”
所以,在华为看来,自动驾驶落地的阶段,按应用场景划分要比按从L0到L5的技术等级划分更合适。
比如,业界可以探索这样一种自动驾驶落地发展路径:
当然,这一划分并非华为首次提出。2017年以来,地平线战略副总裁李星宇也曾在多个场合强调“自动驾驶按技术等级划分,不如按应用场景划分”。
业界通过调研发现,在中国,城区行驶和泊车占用户用车时间的96%,因此,城际快速的点到点,核心城区的拥堵情跟随,加塞,红绿识别,市区的点到点,小区及停车场的自动泊车,成为华为最先要解决的场景。
这些,也是最能体现智能驾驶价值的关键场景。
下一步,就是识别有危险的结构化道路,如上下匝道、U型掉头;还有危险障碍物,如多种交通参与者。
首页 下一页 上一页 尾页-
小米智能手表有望本月发布:搭载骁龙Wear芯片,支持eSIM卡/NFC2019-10-12
-
华为VR Glass,5G生产力工具2019-10-12
-
华为Watch GT 2首销:麒麟A1加持 1488元起2019-10-12
-
美国与华为的纠葛给美国芯片造成巨大损失,欧日韩将成获益者2019-10-12
-
详解华为Mate30/Pro上的“花样截屏”:隔空手势、指关节“三式”2019-10-12
-
传统家电企业纷纷进军芯片半导体领域,拉开科技转型序幕2019-10-12
-
苹果自研5G芯片新消息:最快2022年投入iPhone商用2019-10-12
-
任正非:华为不需2-3年就能打造一个媲美iOS的鸿蒙手机系统2019-10-12
-
无人驾驶最大的拦路虎:激光雷达2019-10-12
-
专业摄影界大佬指点,感受华为Mate30系列电影四摄魅力2019-10-12
-
华为电视真不会开打价格战?2019-10-12
-
一图看懂华为EMUI“手机克隆”功能2019-10-12
-
青岛港、中国移动、华为联合推进5G智慧港口实践2019-10-12
-
芯片制造获重视,中芯国际可望加速追赶三星和台积电2019-10-12
-
Oxbotica开发自动驾驶软件,每秒可以检测150辆汽车2019-10-12