首页 > 江南app下载平台666

案例:咖啡初加工废水处理工艺及设计

来源:江南app下载平台666 网
时间:2022-07-15 10:02:36
热度:

案例:咖啡初加工废水处理工艺及设计01 咖啡初加工废水水质特征云南某咖啡加工有限公司临沧某加工厂采用湿法加工+生物质锅炉供热烤干工艺,建设规模为25m³(鲜果)/d,咖啡初加工废水

01 咖啡初加工废水水质特征

云南某咖啡加工有限公司临沧某加工厂采用湿法加工+生物质锅炉供热烤干工艺,建设规模为25m³(鲜果)/d,咖啡初加工废水主要来源于咖啡鲜果清洗分级、机械脱皮、脱胶及发酵浸泡清洗工序,根据其产生废水的污染程度,可以将其分为咖啡鲜果清洗废水、咖啡湿式脱壳废水(包括发酵浸泡水)和脱胶废水,其典型污染指标见表1。

由表1可知,

(1)咖啡清洗废水,约占比2/5,颜色灰黑色,水中含有大量灰尘、腐叶等,SS较大,有机污染物来源于腐烂、破损的咖啡豆,COD等污染物含量与循环使用次数有关,通常小于1 000mg/L;

(2)咖啡湿式脱壳、浸泡发酵废水,约占比2/5,由于大量果汁、果肉、果胶存在,加之成熟咖啡鲜果中果胶多为可溶性果胶等高分子化合物,废水成分复杂,悬浮物、果胶、COD、BOD5、氨氮较高,其可生化性差,难以生化处理,为重点处理对象;

(3)脱胶废水(废液),颜色变化同脱壳废水,来源于咖啡脱壳后咖啡果胶混合物的分离,废水量约占比1/5,主要为果胶水混合物。

三者综合混合废水依然具有较大的污染指标,属于典型的有机污染废水,污染物为咖啡果上脱落的果皮、果肉及汁水等组成,成分主要为植物纤维、植物蛋白、果糖、植物油脂、维生素及果胶等有机物和沙土等,主要污染指标为色度、pH、SS、COD、BOD5、总氮、氨氮、总磷、总大肠菌群等。

为了解该废水酸化及污染变化特点,研究选取咖啡加工混合水样,对废水pH和COD随时间的变化进行分析,结果如图1所示。咖啡加工废水特征为高有机物浓度、SS和氨氮,果胶多为可溶性果胶,COD主要于溶解态存在,颗粒、悬浮态约占比2 000~4 000mg/L,有机物易酸化导致废水呈酸性,pH范围为3~5。

02 咖啡污水处理及工艺选择分析

前述分析可知,咖啡废水属于酸性高浓度有机污染废水,其BOD5/COD为0.35~0.43,属于可生化范畴,适宜采用以生化工艺为主体净化,而COD浓度大于10 000mg/L,选择厌氧消化和好氧降解相结合较为适宜。但由于废水酸化pH下降较快,此酸度(pH=3~5)范围将严重抑制产甲烷菌繁殖;其次,废水中含有大量果壳、果肉碎屑、果胶胶体以及不溶性果胶等物质,很难脱水,微生物分解的效果也不理想。因此,有必要先经过物化预处理实现SS、pH、果胶的去除。

(1)预处理。咖啡果壳含量较大,使用格栅除渣负荷较大,应考虑实现果壳分离及挤压脱水,宜采用斜筛、螺旋输送压缩脱水或干湿分离设备;SS易沉淀,果胶混合物易漂浮,应采用初次沉淀浮渣刮渣一体化构筑物;酸度低影响厌氧消化产气,应预先提供碱度,采取石灰、碱液、消化出水回流中和等方式调节pH。另一方面,脱胶水浆较浓,呈粘稠状,脱胶液混合其他废水将导致污染负荷增大,可在中和池和调温池之间加入钙盐或聚氯化铝(PAC),盐析出果胶混合物,而后用聚丙烯酰胺(PAM)调理,经叠螺式脱水机压滤去除果胶渣,最后再与其他类废水混合可有效降低后续处理负荷。

(2)厌氧消化。经对比而言,厌氧生物法是比较经济和有效的,推荐作为主要工艺。但厌氧生化反应器的类型多样,选用何种类型的厌氧生化反应器对废水处理十分关键,可以根据建设单位经济、用地条件,选择目前运行较好的UASB、IC、ABR等厌氧反应器,其中ABR反应器在高负荷情况下,具有高效截留活性微生物、运行费用低、剩余污泥少等优点,适用于处理高浓度有机废水。

(3)好氧处理。当咖啡废水经过预处理及厌氧成功消化处理后,其工艺的选择是比较宽泛的,无特殊要求,但应注意,厌氧出水COD浓度对于好氧环节依然较高,应采用多级处理方式。同时由于该废水碳氮比约25~20∶1,一般无需特别考虑脱氮除磷,利用微生物增殖及同步硝化反硝化即可实现氮素达标。

(4)三级处理。废水经过预处理、厌氧好氧结合处理后,基本可以实现达标(GB 8978-1996)排放。三级处理工艺的选择主要取决于废水的回用用途,若回用于咖啡初加工,应进一步降低残留SS、细菌含量,可以选择高效混凝沉淀、纤维滤布过滤、过滤砂缸等方法。消毒灭菌达标排放可选较为简单次氯酸钠消毒,回用则根据用水工段的卫生及洁净标准选择二氧化氯、臭氧和紫外消毒等方式。

03 典型净化工艺设计

3.1 工艺流程及特点

云南某咖啡加工有限公司临沧某加工厂采用湿法加工,废水产量为100m³/d,设计进水水质为表1混合废水水质指标。根据建设方及受纳受体水功能要求,经处理后外排废水应执行国家标准《污水综合排放标准》(GB 8978-1996)中第二时段的一级标准,结合废水的水质特征及上述工艺选择分析,该厂工程案例采用斜筛筛分去壳-混凝沉淀-中和-调温-ABR厌氧消化产气-二段生物接触氧化-高效混凝沉淀-次氯酸钠消毒组合工艺,工艺流程见图2。

该工艺特点如下:

①采用斜筛与气浮相结合,筛分去除大量果壳,混凝设置排泥泵及浮渣刮渣设备去除悬浮颗粒及上浮果胶,控制ABR进水SS≤500mg/L,以免对污泥颗粒化造成不利影响或减少反应区的有效容积。同时辅助于调节池预曝气,均化水质并防止进一步酸化。

②石灰乳-碳酸氢钠-ABR回流水三合一中和原水调节pH(6.5~7.5)并提供碱度,防止腐蚀换热设备,保障厌氧消化快速进入产甲烷阶段。

③废水厌氧消化协同生物质燃料调温有效降低废水处理成本,经中温(30~35℃)ABR厌氧消化转化有机污染物为甲烷和CO2,可稳定控制实现80%~90%的COD去除率,保障进入好氧工段的COD小于2 000mg/L。

④设中间沉淀池为二段生物接触氧化池,一段处于高负荷运行,二段设计低负荷运行,可有效缓冲污水有机污染物高负荷进水冲击,保障出水指标的稳定。

3.2 主要构筑物设计参数

该厂工程案例设计时以平均水量100m³/d和最大污染负荷计算,根据构筑物功能及中试,整个污水处理流程各处理工段污染物设计去除配比见表2。

3.2.1 振动斜筛、气浮机

果壳固液分离振动斜筛和果胶浮渣气浮机,直接购置国产成套设备。其中,果壳固液采用ZF-GY-40斜筛振动式固液分离机分离,外形尺寸:L×W×H=1.6m×1.22m×1.53m,污液处理流量≥40m³/h,果壳碎屑去渣率>90%,功率3.2 kW,380 V。气浮机采用中发环保ZF-QF-10溶气气浮一体设备,因水果胶、悬浮物等存在,其浊度较高,配置处理流量≥20m³/h,尺寸:L×W×H=4.0m×3.0m×2.3m,1座,碳钢防腐结构,需气量约1.0 m³/min。

3.2.2 调节池

咖啡废水波动较大,设调节池1座稳定水质水量,兼事故池功能。水力停留时间20h,钢筋混凝土地埋式,结构尺寸L×W×H=6.5m×3.5m×4.5m,有效水深4.0m。设置污水提升泵2台(1用1备),带自耦装置,流量10m³/h,扬程10m,功率1.1kW;潜达TQJ-260-740-0.85搅拌器2台,叶轮直径为320mm,功率为0.75 kW;浮球开关及玻璃转子流量计各1个,清淤污泥泵1台及配套排泥管1套。

3.2.3 中和池、调温池

中和池混合原水与石灰乳、碳酸氢钠和厌氧消化回流液,pH范围6.5~7.5,同时提供1 000~2 000mg/L的碱度。中和反应槽选用钢筋混凝土地埋式矩形池1座,结构尺寸L×W×H=3.5m×2.0m×4.5m,反应时间t=2.0h。采用潜达TQJ-260-740-0.85搅拌器1台,石灰乳化池1座,碳钢防腐结构,1 000L加药系统2套。

调温池1座,结构尺寸L×W×H=4.5m×3.0m×4.5m,钢筋混凝土地埋式,两格室,其中一格装换热器,另一格(1.5m×3.0m×4.5m)安装提升泵,将污水提升至ABR反应池,设置热水板式换热系统1套,污水提升泵2台(1用1备),带自耦装置,流量为10m³/h,扬程15m,温度在线显示仪1套。

3.2.4 ABR反应池

ABR反应池COD去除率设为85%,进出水COD分别为12 000mg/L、1 800mg/L,污泥浓度60g/L,有机负荷3.0 kgCOD/(m³·d),反应池升流速度0.32mm/s,ABR反应池为矩形钢筋混凝土半地上式,1座,结构尺寸L×W×H=17m×3m×7.5m,有效容积300m³,水力停留时间72h,格室数5格,第一进水和第五出水格室宽度4m,其余每格3m,每个格室下部安装污泥排放口便于取样观察厌氧污泥性能,上部储存空间相通,集体收集消化气;由于水量不大,为简便施工和节约建设成本,如图3、图4所示,每格室下部设置渐宽棱台,以3个直径160mm的PVC作为降流管,降流管下部沿棱台均匀布水,倾角60°,布水系统5套;ABR整体设置混合液回流,同时每格室设置内回流,可调控上升流速和水质。配套混合液回流泵、内回流泵各2台(2用2备),流量20m³/h,扬程10m,沼气水封及锅炉燃烧利用系统1套。

3.2.5 二段生物接触氧化池

二段生物接触氧化池中间设置中间沉淀池,以便实现一级高负荷、二级低负荷运行,保障出水稳定。一、二级接触氧化池各1座,钢筋混凝土半地上式,一级接触氧化池,有机负荷1.5 kgCOD/(m³·d),尺寸为L×W×H=8.0m×5.0m×4.5m,有效水深4.0m,HRT为28.8h;二级接触氧化池有机负荷0.3 kgCOD/(m³·d),尺寸为L×W×H=5.0m×3.0m×4.5m,有效水深4.0m,HRT为9.0h。接触氧化池体内挂组合填料,直径为150mm,高度为3m,分两层,共165m³,配TSW-50-3KW罗茨鼓风机2台(1用1备),风量1.7m³/min,风压49.2 kPa,功率4.5 kW。

3.2.6 中间沉淀池、二沉池

中间沉淀池、二沉池均采用竖流式池设计,表面水力负荷1.0 m³/(m2·h),池体结构为正方形,钢筋混凝土地埋式各1座,结构尺寸L×W×H=3.5m×3.5m×5.5m,其中污泥沉淀区2.2m,下部椎体尺寸为0.4m×0.4m,污泥斗高2.0m,中心管出水口与反射板缝隙0.3m,超高、缓冲层高度各0.5m,总高5.5m。设置污泥回流泵、排泥泵各3台(4用2备),流量10m³/h,扬程10m,功率0.75 kW,不锈钢出水溢流堰2套,共28m。

3.2.7 高效混凝沉淀池

因原污水浓度较高,设计二沉池经加PAC、PAM高效混凝沉淀,以保障出水稳定达标。高效混凝沉淀池采用斜管沉淀池,钢筋混凝土半地埋式,表面水力负荷为1.0m³/(m²·h),尺寸为L×W×H=5.5m×3.5m×5.5m,池内有效停留时间1h,斜管倾角设计为60°,斜管孔径取50mm,共12m²,内置1个加药搅拌池,尺寸为L×W×H=1.725m×1.5m×2.0m,以曝气搅拌,需气量为0.2m³/min。斜板沉淀区垂直高度、上部水深及底部缓冲层高度均为1.0m,泥斗高2.0m,设置容积为1 000L PAC、PAM加药装置各1套,流量60~100L/h,排泥泵1台,规格同上,不锈钢出水溢流堰10.5m。

3.2.8 清水池(回用水池)

清水池储存污水系统净化出水,以备回用,钢筋混凝土半地埋式1座,尺寸为L×W×H=6.5m×4.0m×4.5m,有效容积100m³,回用水提升泵2台(1备1用),流量20m³/h,扬程40m,功率5.5 kW。

3.2.9 污泥浓缩池

污泥浓缩池、消化池布置于设备房下,1座,钢筋混凝土全地埋式,结构尺寸L×W×H=2.0m×2.0m×4.5m,污泥泵2台,流量5m³/h,扬程10m,功率0.75 kW。顶部设备房配置叠螺式压滤机1台,污泥脱水处理量为50~70kg/h,污泥调理配套PAM加药系统1套。

3.2.10 设备房

设备综合用房布置于污水处理调节池、中和池等构筑物上,钢筋混凝土结构,1栋,有效尺寸为L×W×H=18.5m×3.5m×3.0m,共分5间,包括污泥脱水车间、电控柜、风机、泵房及加药系统等设备用房。

04 调试运行及处理效果

临沧某咖啡加工厂污水处理站于2018年8月建成,咖啡采收加工期间为2018年10月初至2019年3月,气温5~25℃,平均12℃,霜冻不明显。该工程活性污泥采用城市污水处理厂污泥进行接种驯化,其中ABR反应池污泥投加污泥消化池、化粪池污泥,投加量约20t,生物接触氧化池污泥取自城市污水处理厂80%脱水污泥约5t,接触好氧池闷曝24h后,开始逐步泵入咖啡废水,白天进水,晚上闷曝,其中,ABR通过混合液和原水控制上升流速,进行污泥挂膜、驯化,中和池调节pH为6.5~7.5。

初期调试时,尝试不进行调温控制,研究不控温是否能满足处理要求。观察发现,若保证污水达到GB 8978-1996中第二时段的一级标准,污水处理量仅能达到设计负荷的20%~30%。2个月后,开始启动调温换热系统,控制ABR进水温度在30~35℃中消化,持续调试运行1月后,达到24h连续进水,满负荷运行。开始控制温度后,采用COD哈希消解仪、测定仪连续监测ABR和整个系统的进出水COD指标,发现去除效果良好。ABR进水、出水COD含量差距明显,去除率为85%,达到预计设计标准;其总体运行良好,系统出水水质达到GB 8978-1996中第二时段的一级标准,总体COD去除率达97%。结果如图5所示。

在调试期间,废水经多次循环回流后,进入调节池长时间储存,稳定其水质水量,降低有机负荷,待ABR反应池启动完成后,再进行处理。且初期调试时间较长,待调试完成后,后续启动可在1个月内完成。此外,咖啡果实成熟时间不同,前期咖啡废水量较少,可以在调节池中储存一段时间,且实际运行中,污水处理厂一般通过预留废液,在咖啡采收加工前进行启动工作,为后续废水处理奠定基础。

05 技术经济指标

本项目总投资为282万元,其中土建工程150万元,设备购置、安装及管理等费用132万元。咖啡原水处理运行费用约4.68元/m³,包括电费1.22元/m³(总装机容量22 kW),石灰、絮凝剂等药剂费1.14元/m³,调温生物质燃料费2.0元/m³,人工0.3元/m³。

06 结 论

(1)咖啡初加工废水为酸性高浓度有机废水,含大量的悬浮物、BOD5、COD、有机氮、氨氮、果胶等有机污染物质,若不经处理而直接排放,将使得周围水体严重富营养化,严重破坏水体的自净能力,造成受纳水体发黑变臭,影响环境和农业灌溉。高酸度、高果胶、悬浮物和高有机污染物是其咖啡废水的典型特征。

(2)咖啡初加工废水总体上属于可生化性废水,其净化应考虑预处理+厌氧消化+好氧氧化+三级处理的净化工艺路线。依据其路线,结合工程实际案例,采用斜筛筛分去壳-混凝沉淀-中和-调温-ABR厌氧消化产气-二段生物接触氧化-高效混凝沉淀-次氯酸钠消毒组合工艺,可有效去除污染物,出水水质稳定达标。

Baidu
map